
Final presentation
Learning safe value functions

Project thesis

Tsung Yuan Tseng

Supervisor: Alexander von Rohr, M. Sc.
Institute for Data Science in Mechanical Engineering, RWTH Aachen University

July 26, 2022

1 Final presentation | Tsung Yuan Tseng | July 26, 2022

Context and Problem

1

▶ Learning directly on hardware usually
encounters lots of failures.

▶ Failures typically mean painful reset
time and physical wear and tear in
these scenarios.

▶ How can we encode safety and
enhance sampling efficiency during
learning while also preserving
optimality in the end?

1Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, et al. (2018). “Soft actor-critic algorithms
and applications”. In: arXiv preprint arXiv:1812.05905

2 Final presentation | Tsung Yuan Tseng | July 26, 2022

Safety Definitions

Definition (Failure Set)

Failure Set SF is a set containing the states considered failures.

Definition (Viability Kernel 2)

Viability kernel is a maximal set of all states s ∈ SV in which there exists at least one
action a ∈ A such that the next state s′ = T (s, a) is still inside SV .

2Jean-Pierre Aubin et al. (2011). Viability theory: new directions. Springer Science & Business
Media

3 Final presentation | Tsung Yuan Tseng | July 26, 2022

Safety Definitions Cont.

[Steve Heim]

4 Final presentation | Tsung Yuan Tseng | July 26, 2022

Safety Definitions Cont.

Definition (Viable Set 3)

The viable set QV := S ×A is a
maximal set of all state-action pair
q ∈ QV such that the next state
s′ = T (q) is still inside SV .

Definition (Safety)

Safety means an agent’s trajectory
always stays in the viable set QV .

Example:

4

4Steve Heim and Alexander Spröwitz (2019). “Beyond basins of attraction: Quantifying robustness
of natural dynamics”. In: IEEE Transactions on Robotics 35.4, pp. 939–952; Steve Heim,
Alexander Rohr, et al. (2020). “A learnable safety measure”. In: Conference on Robot Learning,
pp. 627–639

5 Final presentation | Tsung Yuan Tseng | July 26, 2022

Problem Formulation

▶ Consider the objective in entropy-regularized RL (SAC) 5:

G(s, π) =

T−1∑
t=0

γtE(st,at,st+1)∼ρπ [r(st, at, st+1) + αH(π(·|st)) | s0 = s]. (U)

▶ We specify the constraint function:

c(s, π) =

T−1∑
t=0

γtE(st,st+1)∼ρπ [δSF
(st+1) | s0 = s]. (1)

▶ Our problem becomes:

max
π

G(s, π) s.t. c(s, π) = 0. (C)

5Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, et al. (2018). “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor”. In: International conference
on machine learning, pp. 1861–1870

6 Final presentation | Tsung Yuan Tseng | July 26, 2022

Problem Formulation Cont.

▶ Penalized Problem:

max
π

G(s, π)− p · c(s, π). (P)

▶ Massiani et al. (2021) prove that, under some mild assumptions, there exists p∗

such that for all p > p∗, all maximizers of the penalized problem (P) are optimal
for the constrained problem (C)6.

▶ However, in our case, it is hard to tune the penalty because of the existence of the
entropy term.

6Pierre-François Massiani et al. (2021). “Safe value functions”. In: arXiv preprint arXiv:2105.12204

7 Final presentation | Tsung Yuan Tseng | July 26, 2022

Methods

▶ A typical procedure for solving RL problems:

▶ But! Too many failures! The need for exploring really hampers safety in RL 7.

7Lukas Brunke et al. (2022). “Safe Learning in Robotics: From Learning-Based Control to Safe
Reinforcement Learning”. In: Annual Review of Control, Robotics, and Autonomous Systems 5,
pp. 411–444

8 Final presentation | Tsung Yuan Tseng | July 26, 2022

Methods Cont.

▶ How about learning to be safe and using this knowledge to learn whatever newly
assigned tasks?

9 Final presentation | Tsung Yuan Tseng | July 26, 2022

Methods Cont.

▶ Our framework contains two learning stages.
1. Learning safety supervisor (LSS) for only avoiding failures (r=0)

▶ Q̂ϕ, π̂θ, and Q̂V = {q, Q̂ϕ > 0}
2. Transfer Learning with Safety Supervisor (TL-SS) (r is designed for the new task)

▶ Use Q̂ϕ and π̂θ to initialize networks.
▶ Use Q̂V to guide exploration.

10 Final presentation | Tsung Yuan Tseng | July 26, 2022

Methods Cont.

▶ How can we determine the penalty?

max
π

G(s, π)− p · c(s, π). (P)

▶ The Lagrangian dual problem:
▶ L(π, λ) = G(s, π)− λ · c(s, π), where λ = p
▶ Dual function g(λ) = sup

π
L(π, λ) ≥ L(π̃, λ) = G(s, π̃)

▶ Find the best upper bound: min
λ

g(λ)

▶ Iteratively solves dual sub-problem and dual problem using gradient descent.

11 Final presentation | Tsung Yuan Tseng | July 26, 2022

Methods Cont.

▶ We propose an approach to autotune the penalty:

min
p

max
π

G(s, π)− p · c(s, π). (2)

which can be re-written:

min
p

max
π

T−1∑
t=0

γtE(st,at)∼ρπ [r(st, at, st+1)− p · δSF
(st+1) + αH(π(·|st)]. (3)

▶ As solving the maximization problem, by replacing reward with
r(s, a, s′)− p · δSF

(s′), we can apply SAC algorithm.
▶ As solving the minimization problem, we update p by reducing the following loss

function:

L(p) = −p · 1

|△|
∑

(s,a,r,s′)∈△

δSF
(s′). (4)

12 Final presentation | Tsung Yuan Tseng | July 26, 2022

Methods: Learning Safety Supervisor (LSS)

▶ Why can we recover viable set by Q̂V = {q, Q̂ϕ > 0}?

min
p

max
π

T−1∑
t=0

γtE(st,at)∼ρπ [−p · δSF
(st+1) + αH(π(·|st)]. (5)

▶ Q is exactly the above objective without counting the
entropy bonus of the first step.

▶ Optimal policy will try to stay QV as long as possible.

▶ Yet, if the agent ever leaves QV , it fails ultimately.

▶ Thus, if the penalty is larger than the entropy bonus
gathered along the way to failure, we could threshold the
learned Q function by 0.

13 Final presentation | Tsung Yuan Tseng | July 26, 2022

Experiment

▶ SAC-PA is used for comparison as we want to answer if safety supervisor can
guide the learning safely and sampling efficiently while preserving optimality.

14 Final presentation | Tsung Yuan Tseng | July 26, 2022

Experiment: Hovership

▶ We test our algorithm on hovership but in the version of continuous state-action
space for 50 runs.

▶ Q̂V ▶ Ground-truth QV by brute-force

15 Final presentation | Tsung Yuan Tseng | July 26, 2022

Experiment: Hovership

▶ We monitor the accuracy of Q̂V via root mean square error:

RMSE =
1

N

∑
(s,a)∈Grid

√
(QV (s, a)− Q̂V (s, a))2. (6)

16 Final presentation | Tsung Yuan Tseng | July 26, 2022

Experiment: Hovership

▶ The assigned task is to learn the optimal policy such that the hovership moves
from the initial state h = 1.8 to the goal state h = 1.3 as fast as possible.
Therefore, we define γ = 0.8 and the following reward function:

r =

{
50, if h = 1.3± 0.01

0, otherwise
. (7)

17 Final presentation | Tsung Yuan Tseng | July 26, 2022

Experiment: Hovership

Algorithm Failure Rate
TL-SS 0.0000± 0.0000
SAC-PA 0.0008± 0.0001

18 Final presentation | Tsung Yuan Tseng | July 26, 2022

Experiment: Inverted Pendulum

▶ We test our algorithm on the inverted pendulum in the upward position for 10
runs.

▶ The failure states are defined as the cart position x reaches the boundaries ±2.4
or the pole angle θ exceeds the limits ±45◦; max ep steps and γ are set to 1000
and 1 respectively.

19 Final presentation | Tsung Yuan Tseng | July 26, 2022

Experiment: Inverted Pendulum

▶ The assigned task: train the agent moving from the initial state
x = 0, ẋ = 0, θ = 0, and θ̇ = 0 to the goal state x = 1.5 while stabilizing the pole.

▶ Reward function:

r =


1
2(1 + cosθ) + 2

3x, if 0 ≤ x ≤ 1.5
1
2(1 + cosθ)− 2x+ 4, if 1.5 < x ≤ 2

1
2(1 + cosθ), otherwise

. (8)

20 Final presentation | Tsung Yuan Tseng | July 26, 2022

Experiment: Inverted Pendulum

Algorithm Failure Rate
TL-SS 0.0312± 0.0554
SAC-PA 0.6996± 0.0554

21 Final presentation | Tsung Yuan Tseng | July 26, 2022

Experiment: Discussion

▶ Our algorithm starts to fail when the
agent tries to accelerate to the right and
samples the state-action pairs that are
out-of-distribution for Q̂V (Safety
supervisor seldom visits before).

▶ Accuracy of Q̂V is the essence of success for avoiding failures.
▶ Soft actor critic algorithm is not sufficient to explore the whole state-action space,

and consequently, learn Q̂V .
▶ Some regions in the state-action space are just hard to visit (probability is rare).
▶ Active learning on Q̂V may be one of the future works.

22 Final presentation | Tsung Yuan Tseng | July 26, 2022

Contributions

1. We propose a practical algorithm, in which we first learn the safety supervisor,
and then transfer the safety knowledge to learn a new given task.

2. On hovership example as a proof of concept, we show that once we learn accurate
enough safety supervisor, in the transfer learning stage, the learning is safe and
sampling efficiently compared to learning from scratch.

3. We evaluate our framework on the high-dimensional task, i.e., inverted pendulum,
to shed light on future works.

23 Final presentation | Tsung Yuan Tseng | July 26, 2022

Bibliography I

Aubin, Jean-Pierre, Alexandre M Bayen, and Patrick Saint-Pierre (2011). Viability
theory: new directions. Springer Science & Business Media.
Brunke, Lukas et al. (2022). “Safe Learning in Robotics: From Learning-Based
Control to Safe Reinforcement Learning”. In: Annual Review of Control, Robotics,
and Autonomous Systems 5, pp. 411–444.
Haarnoja, Tuomas, Aurick Zhou, Pieter Abbeel, et al. (2018). “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor”.
In: International conference on machine learning, pp. 1861–1870.
Haarnoja, Tuomas, Aurick Zhou, Kristian Hartikainen, et al. (2018). “Soft
actor-critic algorithms and applications”. In: arXiv preprint arXiv:1812.05905.
Heim, Steve, Alexander Rohr, et al. (2020). “A learnable safety measure”. In:
Conference on Robot Learning, pp. 627–639.

24 Final presentation | Tsung Yuan Tseng | July 26, 2022

Bibliography II

Heim, Steve and Alexander Spröwitz (2019). “Beyond basins of attraction:
Quantifying robustness of natural dynamics”. In: IEEE Transactions on Robotics
35.4, pp. 939–952.
Massiani, Pierre-François et al. (2021). “Safe value functions”. In: arXiv preprint
arXiv:2105.12204.

25 Final presentation | Tsung Yuan Tseng | July 26, 2022

Appendix: Learning Safety Supervisor (LSS)

LSS Algorithm

1: Initialize networks Q̂ϕ1 , Q̂ϕ2 , π̂θ
2: for each interaction steps do
3: at ∼ π̂θ(at|st)
4: st+1 ∼ p(st+1|st, at)
5: △← △∪ (st, at, rt, st+1, δSF

(st+1))
6: for each gradient steps do

7: Apply SAC update for Q̂ϕ1 , Q̂ϕ2 , π̂θ

8: p← p− λ∇̂L(p)
9: end for

10: end for
11: Q̂V = {q,min(Q̂ϕ1 , Q̂ϕ2) > 0}
12: return Q̂V , Q̂ϕ1 , Q̂ϕ2 , π̂θ

Appendix: Learning Safety Supervisor (LSS)

LSS Algorithm

1: Initialize networks Q̂ϕ1 , Q̂ϕ2 , π̂θ
2: for each interaction steps do
3: at ∼ π̂θ(at|st)
4: st+1 ∼ p(st+1|st, at)
5: △← △∪ (st, at, rt, st+1, δSF

(st+1))
6: for each gradient steps do

7: Apply SAC update for Q̂ϕ1 , Q̂ϕ2 , π̂θ Maximization via SAC

8: p← p− λ∇̂L(p) Minimization via Penalty Autotune

9: end for
10: end for
11: Q̂V = {q,min(Q̂ϕ1 , Q̂ϕ2) > 0}
12: return Q̂V , Q̂ϕ1 , Q̂ϕ2 , π̂θ

Appendix: Transfer Learning with Safety Supervisor (TL-SS)
TL-SS Algorithm

1: Q̂V , Qϕ1 , Qϕ2 , πθ ← Learning Safety Supervisor
2: for each interaction steps do
3: at ∼ πθ(at|st)∀a s.t. (st, a) ∈ Q̂V

4: if ∄a s.t. (st, a) ∈ Q̂V then
5: at ∼ πθ(at|st)
6: st+1 ← ∀sclosest ∈ SF
7: else
8: st+1 ∼ p(st+1|st, at)
9: end if

10: △← △∪ (st, at, rt, st+1, δSF
(st+1))

11: for each gradient steps do
12: Apply SAC update for Qϕ1 , Qϕ2 , πθ
13: p← p− λ∇̂L(p)
14: end for
15: end for

Appendix: SAC Penalty Autotune (SAC-PA)

SAC-PA Algorithm
1: Initialize networks Qϕ1 , Qϕ2 , πθ
2: for each interaction steps do
3: at ∼ πθ(at|st)
4: st+1 ∼ p(st+1|st, at)
5: △← △∪ (st, at, rt, st+1, δSF

(st+1))
6: for each gradient steps do
7: Apply SAC update for Qϕ1 , Qϕ2 , πθ
8: p← p− λ∇̂L(p)
9: end for

10: end for

	References

	anm0:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

