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Context and Problem

» Learning directly on hardware usually
encounters lots of failures.

> Failures typically mean painful reset
time and physical wear and tear in
these scenarios.

» How can we encode safety and
enhance sampling efficiency during
learning while also preserving
optimality in the end?

'Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, et al. (2018). “Soft actor-critic algorithms
and applications”. In: arXiv preprint arXiv:1812.05905
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Safety Definitions

Definition (Failure Set)

Failure Set S is a set containing the states considered failures.

Definition (Viability Kernel )
Viability kernel is a maximal set of all states s € Sy in which there exists at least one
action a € A such that the next state s’ = T'(s, a) is still inside Sy

2 Jean-Pierre Aubin et al. (2011). Viability theory: new directions. Springer Science & Business
Media
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Safety Definitions Cont.

State space

[Steve Heim]
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Safety Definitions Cont.

Definition (Viable Set 3) Example:
The viable set Qy =S x A is a Sy s' = T(s,a) 0
0 . . a v
maximal set of all state-action pair s¢ 01t
g € Qy such that the next state 1211
s’ =T(q) is still inside Sy . % 12321
W3] [543
Definition (Safety) Yl4| 5|55
Safety means an agent's trajectory FE 4

always stays in the viable set Qy .

*Steve Heim and Alexander Sprowitz (2019). “Beyond basins of attraction: Quantifying robustness
of natural dynamics”. In: |[EEE Transactions on Robotics 35.4, pp. 939-952; Steve Heim,
Alexander Rohr, et al. (2020). “A learnable safety measure”. In: Conference on Robot Learning,
pp. 627-639
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Problem Formulation

» Consider the objective in entropy-regularized RL (SAC) °:
-1

Gls,m) =Y V' Esparsesi)mps [1(6: 0t st01) + aH (7w [se) [ so=s]. (V)
t=0

» We specify the constraint function:
T—1
C(S’ﬂ-) = Z 7tE(St,St+1)~P7r [531«“ (St-i-l) | 50 = S]' (1)
t=0

» Qur problem becomes:

mazx G(s,m) s.t. ¢(s,m) =0.

(©)

®Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, et al. (2018). “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor”. In: International conference
on machine learning, pp. 1861-1870
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Problem Formulation Cont.

» Penalized Problem:

max G(s,7) —p-c(s,m). (P)

™

» Massiani et al. (2021) prove that, under some mild assumptions, there exists p*
such that for all p > p*, all maximizers of the penalized problem (P) are optimal
for the constrained problem (C)°.

> However, in our case, it is hard to tune the penalty because of the existence of the
entropy term.

®Pierre-Frangois Massiani et al. (2021). “Safe value functions”. In: arXiv preprint arXiv:2105.12204
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Methods

> A typical procedure for solving RL problems:

New Task

—_—

Sy, Ty

' [Evwomend

a

Policy

» But! Too many failures! The need for exploring really hampers safety in RL .

"Lukas Brunke et al. (2022). “Safe Learning in Robotics: From Learning-Based Control to Safe
Reinforcement Learning”. In: Annual Review of Control, Robotics, and Autonomous Systems 5,

pp. 411-444
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Methods

Cont.

» How about learning to be safe and using this knowledge to learn whatever newly
assigned tasks?

S¢, 1y

U

To be Safe

[

Environment

Aa

Safety

New Task

&

U
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Methods

Cont.

» Our framework contains two learning stages.
1. Learning safety supervisor (LSS) for only avoiding failures (r=0)
> Qy, 70, and Qv = {g,Qs > 0}
2. Transfer Learning with Safety Supervisor (TL-SS) (r is designed for the new task)
> Use Q¢ and 7y to initialize networks.
> Use QV to guide exploration.

Learning Safety Supervisor Transfer Learning with Safety Supervisor

Sir1s Vil <ﬂ New Task St+1s Vi1 <:__|_|
To be Safe | Str Tt

; Safety /L S Tt , Policy
me | o o | % L
Ala ATa
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Cont.

Methods

» How can we determine the penalty?

mazx G(s,m) —p-c(s,m). (P)

» The Lagrangian dual problem:
> L(m,A) =G(s,7m) — A-c(s,m), where A\=p
» Dual function g(\) = sup L(m,\) > L(7,\) = G(s,T)
» Find the best upper bound: m/\in g(N)
> |teratively solves dual sub-problem and dual problem using gradient descent.
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Methods Cont.

» We propose an approach to autotune the penalty:

min max G(s,m) —p-c(s,m). (2)
p T
which can be re-written:
T—1
min mazx D V' Elspanympe [P(56,at, 5641) = P 85y (s041) + aH(w (1)) (3)
t=0

P As solving the maximization problem, by replacing reward with
r(s,a,s") —p-ds,(s'), we can apply SAC algorithm.

» As solving the minimization problem, we update p by reducing the following loss
function:

Lp)=—p— 3 (s, (@)

|A| (s,a,r,s") €N
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Methods: Learning Safety Supervisor (LSS)

» Why can we recover viable set by Qy = {q, qu > 0}7

T-1

min maz >V Eis,amp, (7P - O (s141) + 0H(m(-|51)]. (5)
t=0

mmm>—‘—>/m’j

Sy %) Qv P> (@ is exactly the above objective without counting the

entropy bonus of the first step.

» Optimal policy will try to stay Qv as long as possible.

> Yet, if the agent ever leaves Qy, it fails ultimately.

St Ot w | O

1
1
1
3
5 » Thus, if the penalty is larger than the entropy bonus

gathered along the way to failure, we could threshold the
learned Q function by 0.

beccced

B

H & &« «—
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Experiment

Soft Actor Critic with Penalty Autotune

New Task | Str Tt - Policy .
- @ — Comparison
Ala

Learning Safety Supervisor Trans fer Learning with Safety Supervisor

St+1, Tt+1 <ﬂ New Task St+1, T+l <ﬂ

Sy, 14

Toeefe | 0 [omen] | S| | E=N
] o T ] Sl

» SAC-PA is used for comparison as we want to answer if safety supervisor can
guide the learning safely and sampling efficiently while preserving optimality.
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Experiment: Hovership

LSS

> We test our algorithm on hovership but in the version of continuous state-action

space for 50 runs.

> Qv
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Experiment: Hovership LSS

> We monitor the accuracy of Qy via root mean square error:

RMSE = % > \/(QV(S,CL) — Qv(s,a))% (6)

(s,a)eGrid
—— RMSE of Viable Set
0.4 4
kot
W 0.3
@
3
3
5
z
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$ 02
=
4
019
T T T T T T T T
o] 5 10 15 20 25 30 35
episode
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Experiment: Hovership TL-SS

P> The assigned task is to learn the optimal policy such that the hovership moves
from the initial state h = 1.8 to the goal state i = 1.3 as fast as possible.
Therefore, we define v = 0.8 and the following reward function:

- 50, if h=1.3+£0.01
- 0, otherwise
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Test Reward

Experiment: Hovership

TL-SS

50 4

40 4

30 4

201
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episode
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TL-SS
SAC-PA

Failure Rate
0.0000 £ 0.0000
0.0008 + 0.0001
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Experiment: Inverted Pendulum LSS

» \We test our algorithm on the inverted pendulum in the upward position for 10
runs.

> The failure states are defined as the cart position = reaches the boundaries +2.4
or the pole angle 0 exceeds the limits +45°; max ep steps and v are set to 1000
and 1 respectively.

A
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Experiment: Inverted Pendulum TL - SS

> The assigned task: train the agent moving from the initial state
z=0,2=0,0 =0,and 0 = 0 to the goal state z = 1.5 while stabilizing the pole.
» Reward function:
$(1+cost) + 2z, if 0< 2 <15

(14+cost) —2x+4, if l.b<x<2 . (8)
3(1 + cost), otherwise

<
Il
N[

r(x) 1(0)

1T/\ |l‘ |
F I f 1 f I F X \Ii/l — 11': 7}
-24 2 24 -n —-n/4 /4 @
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Test Reward

Experiment: Inverted Pendulum

TL-SS

2000
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TL-SS
SAC-PA

Failure Rate
0.0312 + 0.0554
0.6996 + 0.0554
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Experiment: Discussion

— TL-SS
SAC-PA
2000

{ﬂn
. 4
1500 W » Our algorithm starts to fail when the
W, g agent tries to accelerate to the right and

o samples the state-action pairs that are
20 out-of-distribution for )y (Safety
supervisor seldom visits before).

Test Reward

0 250 500 750 1000 1250 1500 1750 2000
episode

» Accuracy of QV is the essence of success for avoiding failures.

» Soft actor critic algorithm is not sufficient to explore the whole state-action space,
and consequently, learn QV.

» Some regions in the state-action space are just hard to visit (probability is rare).

» Active learning on QV may be one of the future works.
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Contributions

1. We propose a practical algorithm, in which we first learn the safety supervisor,
and then transfer the safety knowledge to learn a new given task.

2. On hovership example as a proof of concept, we show that once we learn accurate
enough safety supervisor, in the transfer learning stage, the learning is safe and
sampling efficiently compared to learning from scratch.

3. We evaluate our framework on the high-dimensional task, i.e., inverted pendulum,
to shed light on future works.

4
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Appendix: Learning Safety Supervisor (LSS)

LSS Algorithm

1: Initialize networks Q¢1,Q¢2,fr9
2: for each interaction steps do

3: ap ~ ﬁ'g(at’St)

4 spp1 ~ p(Ser1]st, ag)

5. A AU (8¢, a¢,7t, 541,05, (5¢41))
6: for each gradient steps do

7 Apply SAC update for Q¢1,Q¢2,ﬁg
8: p—p— )\@L(p)

9: end for

10: end for

11 Qy = {‘%v mip(Q@,Q@) > O}
12: return Qv, Q4,, Qgp,, 7o



Appendix: Learning Safety Supervisor (LSS)

LSS Algorithm

1: Initialize networks Q¢1,Q¢2,fr9
2: for each interaction steps do

30 ap ~ Tg(ag|se)

4 spp1 ~ p(Ser1]st, ag)

5 AR AU(St,at,Tt,St+1,(5$F(St+1))
6: for each gradient steps do

.

Apply SAC update for Q¢1,Q¢2,frg Maximization via SAC
8: P p— )\@L(p) Minimization via Penalty Autotune
9: end for
10: end for

11 Qy = {‘zv mip(Q@,Q@) > O}
12: return Qv, Q4,, Qgp,, 7o



Appendix: Transfer Learning with Safety Supervisor (TL-SS)

TL-SS Algorithm

1: Qv, Q¢ Q¢,, o < Learning Safety Supervisor
2. for each interaction steps do
a; ~ mo(ails)Va s.t. (st,a) € Qv
if fla s.t. (st,a) € Qv then
ag ~ 7T9(at|8t)
St4+1 < VSclosest € SF
else
St+1 ™~ p(5t+1|3t; at)
end if
10: A+ AU (St,at,Tt,St+1,(S$F(St+1))
11:  for each gradient steps do
12: Apply SAC update for Qy,, Qg,, To
13: p < p— AVL(p)
14:  end for
15: end for

e e NT s



Appendix: SAC Penalty Autotune (SAC-PA)

SAC-PA Algorithm
1: Initialize networks Q. , @4, , 7o
2: for each interaction steps do
at ~ g(at|st)
st+1 ~ P(St41]se, ar)
A = AU (S¢, a8, 78, St41, 085 (St4+1))
for each gradient steps do
Apply SAC update for Qg,, Qg,, 7o
p < p—AVL(p)
9: end for
10: end for

w
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