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Abstract

Safety means an agent never visits failure states, e.g., a legged robot never falls to the
ground. Safety is of great importance because the failures usually mean painful reset
time and physical wear and tear in real-world scenarios. However, current methods
to encode safety generally do not scale to high-dimensional tasks or require accurate
dynamics. Our goal is to learn the set of all possible safe policies by learning a
safe value function, which enables safe exploration for arbitrary tasks. We propose
a practical algorithm for learning safe value functions in a model-free manner. We
firstly used neural networks to parameterize safe value functions to avoid failure as
a safety supervisor, and then we use the learned safety supervisor to guide transfer
learning for a new task. We evaluate our algorithm and show that in the general
reinforcement learning setting, on the hovership and inverted pendulum tasks, once
we learn safe value functions for avoiding failures, learning for new tasks is efficient
and the failure rate is significantly lower (0 failure rate on the hovership task and 33
times lower failure rate on the inverted pendulum task) while being able to achieve

outstanding performance in the end.
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1 Introduction

Robot learning on hardware often has good promises on performance as there will be
no discrepancy between simulations and the real world. In this setting, however, the
failures are costly in terms of money, time, or human safety when it is in proximity to
humans. Namely, physical damages, manual reset to initialized states, and collisions
between human beings and machines are some examples. Aubin et al. [1] introduced
viability kernel which is the set of the states for agents to avoid failure. Algorithms
directly computing the viability kernel are available but have several challenges
such as the assumption of accurate dynamics models and they generally do not
scale well. These make them hard to use in practice. Alternatively, Heim et al. [2]
presented the concept of a safety measure based on viability theory which could be
learned using Gaussian processes (GPs) and used as a safety function without the
viability kernel being explicitly computed. However, some open challenges remain,
e.g., scaling to high-dimension tasks and improving sampling efficiency. Massiani
et al. [3] investigated rigorously the safe value function in the general context of
reinforcement learning (RL) and proved that it is optimal with respect to the original
task while encoding the safety by adding a sufficient penalty term for failures, but
it opens up the question if parameterization still leads to valid safe value functions,
which needs further empirical evaluations.

The goal of this project is to extend the theoretical work of [3] to practical RL
algorithms and provide empirical evaluations. Specifically, we want to show that we
can learn safe value functions and, in consequence, viable sets as defined by [4] and

[2], which then will be used to enable safe learning for the new task.

Problem Statement: We consider the standard RL problem on a Markov Decision
Process (MDP), which is defined by the tuple (S,A,T,v,7). S and A are the
continuous state and action spaces respectively, T' is the transition dynamics, r is

the reward function, and ~ is the discount factor. Furthermore, we introduce the



1 Introduction

failure set Sp, a set containing states that considered failed, so as to specify the

constraint function:

T-1

6(3777) = Z 7tE($t,$t+1)~Pw [5SF (St+1) ’ S0 = 3]7 (1'1)
t=0

where s, is the indicator function whose evaluation is one for the state in the
failure set Sp; otherwise is zero. Our aim is to learn the policy 7 that maximizes

the following standard RL objective constrained by Eq. 1.1.

T-1
mazx Z qf"/IE(St’at’sHl)prr [r(st, at, St+1)] s.t. e(sg, ) =0, (C)
t=0

where p, is the marginals of trajectory distribution induced by 7.
We then note the information gained from learning the problem (C) in a source

domain as:
Zs ~ Ps, (1.2)
and information gained from learning the problem (C) in a target domain as:

T, ~ Py (1.3)

We address (C) in two phases:

1. First, the task of being safe is defined in a source domain, and an agent learns

safety information Zs accordingly.

2. Second, an arbitrary task is defined in a target domain, and an agent learns to
behave so that the objective in (C) is maximized by combining the transferred

safety knowledge Z, and target information Z;.
Contributions:

1. We propose a practical algorithm, in which we first learn the task for avoiding

failures, and then transfer the safety knowledge to learn a new given task.



2. On hovership example as a proof of concept, we show that once the agent
equips with accurate enough safety knowledge, in the second learning stage, the
learning is safe and sampling-efficient while preserving optimality compared to

learning from scratch.

3. We evaluate our framework on the high-dimensional task, i.e., inverted pen-
dulum, to showcase the benefits of using safety knowledge and shed light on

future works.






2 Background

This chapter introduces several fundamental objects. In particular, we first deal
with the definition of safety and viability [2], [4]. Secondly, we revisit the theory of
safe value functions [3]. Finally, the state-of-the-art soft actor critic algorithm [5] is

introduced. Our approach is built upon those three building blocks.

2.1 Safety and viability

Definition 1. (Viability Kernel) [2]. Viability kernel is a mazimal set of all states
s € Sy in which there exists at least one action a € A such that the next state
s'=T(s,a) is still inside Sy .

By its definition, the state outside of viability kernel Sy will fail in finite time or is

already in failure set Sp. We denote this set as the unviability kernel. Sy = S\ Sy

Definition 2. (Viable Set) [2]. The viable set Qy =S x A is a mazimal set of all
state-action pair q € Qy such that the next state s' = T(q) is still inside Sy .

Definition 3. (Trajectory). A trajectory means a sequence of state-action pairs of

an agent by following a policy .

Definition 4. (Safety). Safety means an agent’s trajectory always stays in the viable
set Qy .

2.2 Safe value functions

Note that the standard RL problem is to maximize the expected sum of rewards:

T-1
mg.’I} Z PytE(St,at,SHq)NpTr [T(St7 at’ St+1)) ’ 80 = 8}‘ (U>
t=0
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One could already observe the difference between problem (C) is that it is an un-

constrained problem. Now we could define the value function:

T-1
Vﬂ-(s) - Z PYtE(st,at,st+1)~p7r [T(St, at, St+1)> ‘ S0 = S]' (V)
t—
Definition 5. (Safe Value Function) [3]. Given a value function v defined as V, if
all optimal policies that give rise to optimal value function V*(s) = max V™ (s) are
K

safe and optimal with respect to problem (C), then v is a safe value function.

In order to result in a safe value function, one could modify the rewards that only
shape the values on the unviability kernel Sy without affecting the counterpart on
viability kernel Sy such that the optimality is unaffected. In other words, with this,
we are making the unviability kernel less attractive than the viability kernel for an

agent to visit.

2.3 Soft actor critic

Soft actor critic (SAC) is a state-of-the-art and off-policy algorithm that optimizes
the expected sum of rewards and entropy of the policy H (7 (:|s) over stochastic policy
[5]. Our method uses SAC as a backbone. We define the Q value function:

T-1 T—1
Qﬂ(sa a) = ]E(St,at,ShLl)NPrr[Z ’Ytr(sbat’ 3t+1) +ta Z fyt/H(ﬂ-("st)) | S0 = 8,40 = a]?
t=0 t=1
(2.1)
and the Bellman equation for Q7 (s, a):
Q" (s,0) = E(y amp, (5,0, ) +9(Q7 (s, d) + oM (x(]5))]. (2.2)

Since Eq. 2.1 is an expectation, Q™ (s,a) can be approximated with samples:
1
QW(S’ CL) ~ A Z [T(Sv a, S/) + ’Y(Qﬂ(s/’ &/) - lOg7T(C~LI|S/))], a ~ 7T('|5/)7
(2.3)

where A is a set storing interaction experience.



2.3 Soft actor critic

We approximate the value function with a neural network. We note a @ function

approximated by the Q network parameterized by ¢ as:

Qy(s,a) =~ Q" (s, a). (2.4)

Likewise, the policy function approximated by the policy network parameterized by

0 is noted as:
mo(s) ~ m(s). (2.5)

Therefore, one could turn the right-hand side of Eq. 2.3 into the target, leading to

the loss function:

L) =g D [Qu(s.a) = (r(s,a,8") +7(Qs(s, @) — a logme(a'|s))],

| | (s,a,r,s")eN
(2.6)

The Q network updates the weights by minimizing the above loss function. Re-
garding the policy network, it learns the weights by minimizing the following loss

function:

exp(Qy(s,-))
Zy(s)

Kullback-Leibler Divergence Dy takes two distributions as arguments for measur-

L(0) = Esea[Drr(mo(-]s)]] )] (2.7)

ing how much the difference between these distributions are. By minimizing this
loss, intuitively speaking, we move the policy distribution as close as the distribution

of the normalized exponential of the Q function.






3 Related Work

Encoding safety in dynamic systems is challenging. One kind of method is to ensure
safety by constraining the dynamics states in the viability kernel, which can be
computed based on viability theory [1], [6], back-reachable sets [7], [8], or control
barrier functions [9]. However, those methods require accurate models and too
demanding computation. Model-free learning schemes are then investigated by [10],
but is sampling inefficient. Heim and Sprowitz [4] extend viability kernel to viable
set; afterwards, Heim et al. [2] show that it can be learned using gaussian processes
(GPs). However, the computational burden scales cubically with the number of data
points because of GPs.

Safe reinforcement learning can be defined as a learning process that optimizes
over the policy that maximizes the expected return and respect safety constraints
during/after learning [11]. A recent work [12] uses RL schemes to learn safe set, while
the policies trained can only stay safe but are not able to accomplish other assigned
tasks. Shih et al. [13] compute safe sets in a model-based reinforcement learning
setup, which mitigates sampling complexity but may have the issue of model bias.
In this article, we are solving the safe reinforcement learning problem in a model-
free scheme. Our framework can not only allow extracting viable sets but also being
able to learn new given tasks under transferable safety knowledge. We alleviate
sampling complexity by employing the concept of transfer learning [14]. The recent
work [15] uses a similar concept and shows the approach can enable safer, faster, and
stable learning on a new task. However, it is still unclear if the framework harms
the optimality while encouraging safety. Massiani et al. [3] research on safe value
functions directly integrates safety into value functions and they show there exists a
finite penalty such that penalized value functions are safe value functions. However,
some practical aspects remain challenging. For instance, the closed-form solution of
minimum but sufficient penalty is often hard to attain [3]. Moreover, as policies and

value functions are in general parameterized, there are approximation errors that



3 Related Work

may break the theory behind. Our work focuses on proposing an algorithm that
uses neural networks as function approximators and is able to gradually adapt the
penalty.

The focuses of our work are two folds. On the one hand, we aim to develop an
algorithm that can scale to high dimensional tasks in order to learn transferable
safety information which contains the learned safety-aware policy and the safe value
function parameterized by neural networks, as a result, the viable set. On the other
hand, by transferring the safety knowledge, the agent in a similar environment is
capable of exploring safely and efficiently as well as learning the optimal policy with

respect to the new task.

10



4 Methods
4.1 Penalty auto-tune

We consider the entropy-regularized RL objective as followed:

T-1
G(Sa ﬂ-) = Z ’VtE(st,at,stJrl)Npﬂ [T(Stv ag, 5t+1) + O‘/H(W('|St))]v (4'1)
t=0
where the temperature parameter o determines the trade-off between reward r and

entropy of the policy H(m(+|s)).

The problem that we want to solve, as defined in (C) but replaced objective with
(4.1), is a constrained optimization problem that is hard to solve in general. A
common method is to change the constrained optimization problem into an uncon-
strained optimization problem by adding a penalty term to the objective to penalize

the constraint violation:
mazx G(s,m) —p-c(s,m). (P)
i

Massiani et al. [3] prove that, under some mild assumptions, there exists p* such
that for all p > p*, all maximizers of the penalized problem (P) are optimal for the
constrained problem (C). Noted that p* will be different from the proving result in
[3] since our expected sum of rewards G includes the entropy term. This makes it
hard to tune manually in our formulation. Inspired by the Lagrangian dual problem.

We can define the Lagrangian expression for our constraint problem as:

L(m,A) =G(s,m) — A-c(s,m), (4.2)

where p is the Lagrangian multiplier .

11



4 Methods

The dual problem is:
m)%'n g(\) = m/\m sup L(m,\). (4.3)

Since we cannot directly solve the dual sub-problem, we resort to iteratively solving
the dual sub-problem and dual problem using gradient descent. For the readers who
are interested in the Langrangian dual problem, Goodwin et al. [16] have a good

introduction.

As a result, we propose an approach to auto-tune the penalty:

mpz'n max G(s,m) —p-c(s,m). (4.4)

We could rewrite Eq. 4.4 as follows:

T-1
mpm mgx Z ’Yt]E(Styat,st-kl)NP‘rr [T<3t7 ag, St+1) -p 5$F(St+1) + 047'[(7['(-’875))], (45)
t=0

which iteratively solves maximization and minimization problems. As solving the
maximization problem, on the one hand, we apply SAC algorithm by replacing
r(s,a,s’) defined in Chapter 2.3 with R(s,a,s’):

R(s,a,8') =r(s,a,8) —p-ds.(s). (4.6)

While solving the minimization problem, since the optimizer has no control over the
first term G(s,7) (the decision variable is p), it will just try to increase the value of
p such that the second term of the objective is reduced. We then approximate the

second term as the following loss function:

L(p) = A Z -p- 5817 (S/)v (47)

| | (s,a,r,s")EA

which can be interpreted as an estimation of the failure rate. As time goes on, as
the Q function and policy concurrently optimized, when the Q function values are
more attractive on Qy than on @y and the policy improves by minimizing Eq. 2.7,
that means the constraint is less likely to be violated Vs € Sy. In the limit, by the
time when Eq. 4.7 is close to 0, the penalty p converges. This is a highly versatile

12



4.2 Learning safety supervisor

framework. For example, one may modify the learning rate for updating p or only

update it if the current p is not sufficient based on some criteria.

4.2 Learning safety supervisor

Our framework contains two learning stages, learning safety supervisor and transfer
learning with learned safety supervisor. The reason for this proposed method is
that there may be a budget limitation that the developers can only afford failures
for one round but they are asked to learn different tasks in a similar environment.
In this scenario, our framework is highly relevant. Learning safety supervisor has a
goal to learn the transferable safety knowledge, including the viable set, safe value
function, and safe policy, such that a new agent can learn arbitrary tasks safely on
top of the information. Below, we detail how to learn the safety information. The
viable set @y is of great importance because it tells the agent if it is safe or not
given the state-action pair. Once we learn accurate Q)y, we could guarantee safety
during learning the new task. Hence, we introduce the theory-back method to learn

a viable set.

Theorem 1 (Extracting viable set). If we design r = 0, there exists p* such that

for all p > p*, the viable set Qv can be recovered via:

Qv ={q,Q"(¢) > 0}.

Proof. With R(s,a,s’) = —p-ds,(s"), the value function becomes:

T-1 T—1
QW(Sa a) = E(St,at,5t+1)~pw[z _’Ytp : 6SF(St+1) +a Z 'YtH(W("St)) | S0 = $8,a0 = a]-
t=0 t=1

(4.8)

13
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There exists p*, Vg = (s,7(+]s)) € Qu:

o = St (e ls)

71 <p (4.9)
T—1 T—1
= Z A aH (m(]sy) < Z A p - bsp(sie1) (4.10)
t=1 t=0
T—1 T—1
= Y [P Osp(sir1) +a Y A H(w(-]s)] <0, (4.11)
=0 t=1

such that Q™ (q) < 0. Since the entropy term in the expectation is always positive,
we directly know Vg = (s,7(:|s)) € Qv, Q" (¢) > 0. As a result, the viable set Qv

can be recovered via:

Qv ={4.Q"(q) > 0}. (4.12)
|

By defining a source domain on MDP: (S;, A, T, vs,7s = 0), we solve this using
the proposed algorithm in Chapter 4.1. The agent samples the action according
to the current policy and observes the next state by executing the action in the
environment. Further on, the experience of every step is stored in the buffer used
to update the actor, critic networks, and the penalty. After training, the learned
safety supervisor will have information about viable set Qv, critic network Q¢, and

actor network 7y (Algorithm 1).

4.3 Transfer learning with learned safety supervisor

The core idea in this section is that by transferring the safety knowledge from the
first stage to the second stage: transfer learning with learned safety supervisor, we
want to perform transfer learning in a target domain on MDP: (S, A¢, Ty, ¢, 1) with
the guarantee of safety during exploration (Algorithm 2). Note that Sy, As, T} are
the same as the counterparts specified in the source domain and that the problem
is solved by the proposed algorithm in Chapter 4.1. We omit the subscript s and
t if the meaning is clear in the context. We transfer the safety knowledge by three

measures: (1) Initializing the value function by Q¢. (2) Initializing the policy by

14



4.4 Algorithm summary

7. (3) The queriable Qv. Particularly, the learned safety supervisor contains not
only the pre-trained critic Q¢ but also actor network 7y, which conceptually are
safe value function for only avoiding failure and the safe policy to give safe actions.
These networks are thus perfect candidates as the initialized networks in this transfer
learning stage. In addition, during the interaction, the queriable QV comes into
play, i.e., the agent could make inquiries from Qv about whether the current state-
action pair is safe as the agent interacts with the environment. As there must be
approximation errors in QV, there are chances that the safety action doesn’t exist
given the current state. In this situation, we do a virtual step of the possibly unsafe
action and assign the next state as a failure state closest to the current state without
executing the unsafe action in the environment. Further on, we gather the experience
and update the networks accordingly. Due to the fact that the agent already knows
the safety knowledge and will not waste time exploring unsafe (valueless) states, we
expect that transfer learning with learned safety supervisor is safe, more sampling

efficient, and enjoys the optimality compared to learning the tasks from scratch.

4.4 Algorithm summary

The exploration behavior hampers safety in RL [17]. A typical RL procedure (Fig-
ure 4.1) is to learn the optimal policy for the specific task by interacting with the
environment, which may possibly be unsafe during the exploration. Our framework
(Figure 4.2) concatenates two blocks but changes the task of the first block into
learning safety. The second stage of learning can utilize the safety knowledge to
learn the new task.

Algorithm 2 summarizes the whole pipeline, i.e., first to perform safety supervisor
learning (Algorithm 1) and secondly transfer learning. This framework is not limited
to only perform transfer learning for one time. As long as the safety supervisor of
target dynamics is learned, it becomes safe and efficient to do transfer learning
whenever a new task is assigned. In conclusion, instead of directly tackling the
problem (C), our approach, transfer learning with safety supervisor, address the
problem (P) with penalty auto-tune in two learning phases. For the comparison,
Algorithm 3 is the method that directly solves the problem (P) with penalty auto-
tune but without the pre-trained safety supervisor. To ease the notations, we note

the Algorithm 1 as learning safety supervisor (LSS), the Algorithm 2 as transfer

15
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New Task

- =

Environment

Policy

Figure 4.1: A Typical RL procedure. A new task is assigned to the agent and an
RL algorithm is applied where the agent and the environment interact
with each other. During the interaction, possible unsafe actions may be

executed, leading to failed situations.

Learning Sa fety Supervisor

Transfer Learning with Safety Supervisor

Str Tt , Policy
LR
Ala

To be Safe | St Tt .
Tote o
Al

Figure 4.2: Our proposed framework contains (1) learning safety supervisor and (2)
transfer learning with safety supervisor. The goal in the first stage is to
learn transferable safety knowledge to be used in the second stage.
Transfer learning with safety supervisor aims to learn the new task
safely with the help of transferable safety knowledge.
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4.4 Algorithm summary

Soft Actor Critic with Penalty Autotune

St, Ty

4

New Task
—_—

Environment

e

Policy
_

AN

Learning Safety Supervisor

Comparison

Transfer Learning with Safety Supervisor

To be Safe

—_C

Sty Ty

4

Environment

s

New Task

&

N

Safety

St, Tt

4

Environment

e

Policy

—_— o

Figure 4.3: Comparison between our proposed framework and learning from
scratch. The bottom part of the plot is our framework. The upper part
of the plot denotes the method of learning from scratch, soft actor
critic with penalty autotune. We compare these two to answer what
the benefits of using the learned safety supervisor are.

learning with safety supervisor (TL-SS), and the Algorithm 3 as soft actor critic
with penalty auto-tune (SAC-PA).
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Algorithm 1 Learning Safety Supervisor

1: procedure SAFETY SUPERVISOR

2 Initialize networks Q¢1,Q¢2,ﬁ9

3 for each interaction steps do

4 ag ~ ’ﬁ'g(CLt|St)

5: St+1 ~ T (St41]5¢, ar)

6 A = AU (St, 08,7t St41,085 (St+1)) > Assign r=0 everywhere
7 for each gradient steps do > If it is time to update
8 Apply SAC update for Q¢1,Q¢2,ﬁ9

9: p < p—AVL(p) > Penalty autotune
10: end for

11: end for

12: Qv = {q, min(@¢1, Q¢2) >0} > Extract viable set

13: return Qv, Qg , Qg,, 7o
14: end procedure

Algorithm 2 Transfer Learning with Safety Supervisor

1: procedure TRANSFER LEARNING
2 Qv,Q¢,, Ry, g + Learning Safety Supervisor > Algorithm 1
3 for each interaction steps do
4 a; ~ mp(ar|se)Va s.t. (st,a) € Qy > Only execute the safe actions
5: if fa s.t. (s¢,a) € Qy then > If there is no safe action
6: a; ~ mo(ag|st) > Choose the action anyway
7 St+1 < VSclosest € SF > Virtual step
8 else
9: Ser1 ~ T(s¢41]s¢, ar) > Safe execution
10: end if
11: A = AU (St a8, Ry, St41,08, (St+1)) > Designed r for the new task
12: for each gradient steps do > If it is time to update
13: Apply SAC update for Qg,, Qs,, T
14: p—p— /\@L(p) > Penalty autotune
15: end for
16: end for

17: end procedure

18



4.4 Algorithm summary

Algorithm 3 SAC with Penalty Autotune

1: procedure SAC PENALTY AUTOTUNE

2 Initialize networks Qg,, Q¢,, T > Without Safety Supervisor
3 for each interaction steps do

4 ag ~ W@(atlst)

5 ser1 ~ T(st41]58, 1)

6 A = AU (8¢, ae, Re, St41, 085 (St+1)) > Designed r for desired task
7 for each gradient steps do > If it is time to update
8 Apply SAC update for Q4,, Qg¢,, T

9 p—p— )\@L(p) > Penalty autotune
10: end for

11: end for

12: end procedure

19






5 Results

We have tested our algorithm on two dynamics: the hovership spaceship and inverted
pendulum to represent a low-dimensional task and a high-dimensional task, which
are modified from these repositories ! 2. The hovership example, a low dimensional
task as a proof-of-concept, is to showcase the validity of our propose framework.
The hovership has a 1-D state space representing the height of the machine and
a 1-D action space denoting the trust to control the vertical height (Table 5.1).
The mission of the hovership is to explore safely the planet which has a dangerous
gravitation field. On the other hand, the inverted pendulum has a 4-D state space
describing the status of the cart and pendulum; additionally, it has a 1-D action
space to move the cart linearly either to the left or right (Table 5.2). For such
a high dimensional task, typically the ground truth of the viable set attained by
brute force is computationally demanding and often assumed unknown. Below we
first detail the experimental set-up for the hovership and inverted pendulum tasks.
We then introduce the evaluation metrics along with the experiments we made and

finally report and discuss the experiment results.

State/Action Variable Min Max
S Hovership Height: A 0 2
a Hovership Thrust: v 0 0.8

Table 5.1: The state-action space of hovership.

Hovership. The hovership spaceship has a thruster against gravity which is stronger
while approaching the ground. If it hits the ground, it counts as a failure. When the

thruster is fired such that the next state is over the maximum height, then it stays

"https://github.com/sheim/vibly/blob/master/models/hovership.py
*https://github.com/Oxangelo/gym-cartpole-swingup/blob/master/gym_cartpole_swingup/
envs/cartpole_swingup.py

21



5 Results

State/Action Variable Min Max
s1 Cart Position: z 24 24
59 Cart Velocity: & —inf inf
S3 Cosine of Pole Angle: cosf -1 1

S4 Sine of Pole Angle: sinf -1 1

S5 Angular Velocity of Pole: § —inf inf

a Force on Cart: f -1 1

Table 5.2: The state-action space of invented pendulum.

at the highest level. The reward r is designed to be 0, Vh and p = 10 in learning
safety supervisor (Algorithm 1). For Algorithm 2 and 3, the desired task is to learn
the optimal policy such that the hovership moves from the initial state h = 1.8 to
the goal state h = 1.3 as fast as possible. Therefore, we define v = 0.8, p = 50, and

the following reward function:

50, if h=1.3+0.01
'r:{ i (5.1)

0, otherwise

Inverted Pendulum. The inverted pendulum has a motor that can move the cart
linearly on the track. The failure states are defined as the cart position = reaches
the boundaries +2.4 or the pole angle 0 exceeds the limits +45°. We design r = 0
once again for all states and p = 30 in Algorithm 1. Regarding Algorithm 2 and
3, the assigned task is to train the agent moving from the initial state z = 0,4 =
0,0 = 0,and 6 = 0 to the goal state © = 1.5 while stabilizing the pole. Hence, we

design the reward function as followed:

$(1+cos) + 2z, if 0< 2 <15
r= %(1—1—0059)—2:1;—1—4, iflhb<z<2 . (5.2)
3(1 + cost), otherwise

Figure 5.1 is the plot for reward functions and failure states.

Evaluation Metric.

22



(%) r(0)

P T N \ﬁ/ﬁﬂ F_ .

2.4 ' 2 24 n -n/4 m/4 n

Figure 5.1: Reward functions for inverted pendulum. The reward function of the
cart position is shown on the left and the reward function of the pole
orientation is shown on the right. The failure states are colored in gray.

e Root Mean Square Error (RMSE). On the hovership example, we quan-

tify the accuracy of extracted viable set Qv by root mean square error:

RMSE = % SV @uis.a) - Qr(s.a))2 (5.3)

(s,a)eGrid

where (s,a) is a discretized state-action pair in the region of interest: Grid, N
describes the total number of pairs, and @)y is the ground truth computed by

brute force.

« Empty Set Rate. In theory, if we constraint the agent in viable set QV ex-
actly the same as ground-truth @y, then the agent will always stay in viability
kernel Sy,. However, since we approximate QV by neural networks, there al-
ways are approximation errors. Thus, with this metric, we would like to know
the answer that how often the safety supervisor returns an empty safe action

set given fixed evaluation steps.

e Misjudgment Rate. We start the agent from the initial state, and execute
uniform-randomly the safe action given the state at each time step. The next
state of the agent ends up either being stay in viability kernel or not. We
record the rate that QV thinks the action is safe but unsafe in reality. This is
an underestimated value because we realize the action is unsafe only after the

agent visits the failure set.

o Failure Rate. As we want to measure how effective the learned safety super-
visor guiding transfer learning without failures is, we monitor the failure rate

for given interaction steps during transfer learning.
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5 Results

5.1 Hovership

We test our framework on the hovership for 50 runs. In the first learning stage,
learning safety supervisor, we monitor the RMSE between the extracted viable set
Qv and ground-truth Qy computed by brute force (see Figure 1). The RMSE con-
verges to the ground truth. Regarding the second learning phase, transfer learning
with safety supervisor, from the Figure 5.2, one can observe our algorithm TL-SS
converges faster; thus, it is sampling more efficient than SAC-PA. In the end, the
learning performance of TL-SS reaches the same level as SAC-PA. In Table 5.3, the
evaluation metrics are summarized. Even though the empty set rate of LSS is not
perfect, it still has a perfect failure rate of 0 due to good enough understanding of
safety knowledge. It is also because if there is no safe action, we do a virtual step
and reset the environment in the next iteration. All in all, the results suggest that
the safety supervisor guarantees safety during the second stage of learning and does

not affect the agent’s final learning performance.

Algorithm Failure Rate Empty Set Rate Misjudgement Rate

TL-SS 0.0000 £ 0.0000
SAC-PA 0.0008 £ 0.0001
LSS 0.0028 £ 0.0530 0.0000 £ 0.0000

Table 5.3: This table summarizes the failure rate during learning for TL-SS and
SAC-PA where TL-SS manages to stay safe. It also summarizes the
empty set rate and misjudgment rate for LSS.

5.2 Inverted Pendulum

We test our algorithm on the inverted pendulum for 10 runs. Since we are dealing
with a 6 dimensional state-action space, the ground truth of Qy is computationally
demanding and therefore assumed unknown. We summarize two metrics, empty set
rate and misjudgment rate (Table 5.4), to evaluate the learning outcome of Qv.
We observe that the quantity of empty set rate is worse than misjudgment rate,
meaning that the agent doesn’t have the overall understanding of safety knowledge
so empty set rate is high, and it tries to be conservative when it thinks there is no

safe action to be executed so the misjudgment rate is low. For the second phase of
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5.2 Inverted Pendulum

50 4
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Figure 5.2: Test reward in Algorithm 2, transfer learning with safety supervisor
(TL-SS) and Algorithm 3, soft actor critic with penalty auto-tune
(SAC-PA) on hovership. The result shows that out method converges
faster and have comparable final learning outcome.
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5 Results
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Figure 5.3: RMSE of Viable Set in learning safety supervisor (LSS). The learning
curve shows that our method can successfully extract viable set.
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5.3 Discussion

learning, TL-SS final learning performance and learning speed outperform SAC-PA
(see Figure 5.4) while the failure rate is 33 times lower (Table 5.4).

Algorithm Failure Rate Empty Set Rate Misjudgement Rate

TL-SS 0.0312 4 0.0554
SAC-PA 0.6996 £+ 0.0554
LSS 0.0222 £+ 0.1473 0.0004 £ 0.0001

Table 5.4: TL-SS has a 33 times lower failure rate compared to SAC-PA, which
highlights the advantages of using the learned safety supervisor although
the empty set rate and misjudgment rate for LSS are not perfect.

5.3 Discussion

Based on the results of these two experiments, we can observe that if we could
learn accurate enough Qv (in the case of hovership example), the safety supervisor
indeed can guide the learning safely and efficiently while also achieving outstanding
learning outcome. On the inverted pendulum task, TL-SS starts to fail when the
agent tries to accelerate to the right and samples the state-action pairs that are out-
of-distribution for Qv, meaning that the safety supervisor seldom/never visits those
samples before. Hence, the accuracy of Qv is the essence of success for avoiding
failures. Additionally, we find that the soft actor critic algorithm is not sufficient to
explore the high dimensional state-action space, and consequently, learn QV since

some regions in the state-action space are hard to visit.
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5 Results
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Figure 5.4: Test reward in Algorithm 2, transfer learning with safety supervisor
(TL-SS) and Algorithm 3, soft actor critic with penalty auto-tune
(SAC-PA) on inverted pendulum. The result shows that our method is
more efficient and have better performance in the end.
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6 Conclusion

We propose a practical algorithm, in which we first learn the safe value functions for
avoiding failures (safety supervisor), and then use learned critic and actor networks
as an initialization accompanied with extracted viable set transferred to learn a new
given task, both with the possibility of penalty auto-tune. We prove our concept on
hovership example that once we learn an accurate enough viable set, in the transfer
learning stage, the learning is safe and sampling efficiently compared to learning
from scratch. We evaluate our framework on the high-dimensional task, i.e., inverted
pendulum, showing that our algorithm reduces the failure rate significantly while
having better performance in the end. Active learning on Qv may be one of the
future works as it can help the agent be excited to visit the area of the state-action

space that is uncertain.
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